The First Identification of Hydrolysis Species of Uranyl Ions by ¹⁷O N.M.R. Spectroscopy

Woo-Sik Jung, Hiroshi Tomiyasu, and Hiroshi Fukutomi*

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152, Japan

The main hydrolysis species of uranyl ions, $[(UO_2)_2(OH)_2]^{2+}$ and $[(UO_2)_3(OH)_5]^+$, were identified by ¹⁷O n.m.r. spectroscopy, signals being observed at 2.0 and 6.7 p.p.m. relative to the uranyl ion, respectively.

In a previous paper,¹ we explained why the oxygen atoms in the uranyl ion (uranyl oxygens) do not give a single ¹⁷O resonance signal in strongly acidic solution. This is due not to the formation of hydrolysis species of the uranyl ion² but to oxygen isotope effects in the ¹⁷O magnetic shielding of the uranyl oxygens. The electronic structure of the hydrolysis species of the uranyl ion has been studied by various spectroscopic methods.^{3—5} The ¹⁷O resonance of the uranyl oxygens has two characteristic aspects: i, the ¹⁷O relaxation time is significantly long;⁶ ii, the ¹⁷O chemical shift is very

Figure 1. Changes in the ¹⁷O n.m.r. spectrum of a uranyl solution with temperature: $[UO_2^{2+}]_t = 0.30 \text{ M}$ and $-\log[H^+] = 3.73 \text{ at } 6 \text{ °C}$. Typical settings for the measurements are as follows: 8 K data points, 90° pulse angle corresponding to *ca*. 10 µs pulse width, 4 000 Hz spectral width, and normally 2 000 scans.

sensitive to changes in the equatorial ligand of $UO_2^{2+.7}$ Keeping these in mind, we investigated the potential of ¹⁷O n.m.r. spectroscopy as a tool for studying these species.

We measured the ¹⁷O n.m.r. spectra of ¹⁷O-enriched uranyl ions¹ in nitrate solution, the acidity of the samples being adjusted with either NaOH or HNO₃ solution. ¹⁷O N.m.r. spectra were recorded at 13.46 MHz on a JEOL JNM-FX 100 F.T.-n.m.r. spectrometer equipped with a JNM-VT-3B temperature controller. Under strongly acidic conditions there are no oxygen isotope effects in the ¹⁷O magnetic shielding of the uranyl oxygens,¹ which give a single resonance, corresponding to [¹⁶O=U=¹⁷O]²⁺, at *ca*. 1118 p.p.m. relative to pure water at room temperature. The linewidth remains almost constant (*ca*. 1 Hz) irrespective of acid concentration. In weakly acidic solution, however, the linewidth increases with decreasing acid concentration, and the spectra vary with temperature and the concentrations of UO₂²⁺ and H⁺ in this acidic region.

Figure 1 shows the ¹⁷O spectra of a uranyl solution for which $[UO_2^{2^+}]_t = 0.30 \text{ M}$ (t = total) and $-\log[H^+] = 3.73$ at 6 °C. Two extra ¹⁷O resonances were observed to low field of the uranyl oxygens at the lower temperatures, at 2.0 and 6.7 p.p.m. relative to the uranyl ion at 6 °C. The fact that the three resonances coalesce with increasing temperature indicates the occurrence of chemical exchanges among three species. The main hydrolysis species in the aqueous solution measured are $[(UO_2)_2(OH)_2]^{2^+}$ and $[(UO_2)_3(OH)_5]^+$,⁸ and the correlation time for ¹⁷O quadrupolar relaxation of uranyl oxygens in the

latter trinuclear species, which is bulkier than UO_2^{2+} and $[(UO_2)_2(OH)_2]^{2+,8}$ is expected to be longer than those of these two species, leading to a broader linewidth. Therefore, the ¹⁷O resonance observed at the lowest field can be assigned to $[(UO_2)_3(OH)_5]^+$ and the middle line to $[(UO_2)_2(OH)_2]^{2+}$. In order to confirm the assignment, we measured the ratio of the relative intensities of the three species from Figure 1; $I_{1,0}: I_{2,2}: I_{3,5}^{\dagger}$ was 1.00: 1.92: 0.445 at 6 °C. From this ratio, the concentrations of the three species $C_{1,0}$, $C_{2,2}$, and $C_{3,5}$ [†] were calculated as 0.089, 0.086, and 0.013 M, respectively. Equilibrium quotients of $Q_{2,2}$ and $Q_{3,5}$ were estimated to be 3.7×10^{-7} m and 4.2×10^{-17} m³, respectively. These values are close to the equilibrium quotients at 6 °C calculated on the basis of thermodynamic parameters reported by Baes and Meyer,⁹ and lend support to our assignment. We could not observe ¹⁷O resonances of bridged hydroxy ions in the hydrolysis species, presumably because the resonances are very broad or obscured by the ¹⁷O resonance of water.

The electronic absorption bands corresponding to the O' \rightarrow O" transition for the di- and tri-nuclear hydrolysis species have their maxima at longer wavelengths than that for UO₂²⁺,⁵ and the symmetric stretching frequencies for the hydrolysis species are lower than that for UO₂²⁺ because of the ligation of hydroxy ions.⁴ In view of the fact that ¹⁷O chemical shifts of uranyl complexes increase when their lowest electronic transition energies are reduced by ligation,⁷ it is reasonable to expect [(UO₂)₂(OH)₂]²⁺ and [(UO₂)₃(OH)₅]⁺ to show resonances to low field of UO₂²⁺.

Assuming that the observed broadening in the ¹⁷O resonance of UO_2^{2+} is attributed to an association reaction between UO_2^{2+} and $[UO_2OH]^+$,^{10,11} the second-order rate constant was estimated to be 1×10^5 dm³ mol⁻¹ s⁻¹ at 6 °C.

Received, 7th October 1986; Com. 1422

References

- 1 W.-S. Jung, Y. Ikeda, H. Tomiyasu, and H. Fukutomi, Bull. Chem. Soc. Jpn., 1984, 57, 2317.
- 2 S. W. Rabideau, J. Phys. Chem., 1967, 71, 2747.
- 3 J. T. Bell and R. E. Biggers, J. Mol. Spectrosc., 1967, 22, 262.
- 4 L. M. Toth and G. M. Begun, J. Phys. Chem., 1981, 85, 547.
- 5 M. Asano and J. A. Koningstein, Can. J. Chem., 1982, 60, 2207.
- 6 W.-S. Jung, H. Tomiyasu, and H. Fukutomi, Bull. Chem. Soc. Jpn., 1987, 60, 489
- 7 W.-S. Jung, H. Tomiyasu, and H. Fukutomi, Bull. Chem. Soc. Jpn., 1985, 58, 938.
- 8 C. F. Baes, Jr., and R. E. Mesmer, 'The Hydrolysis of Cations,' Wiley-Interscience, New York, 1976, Ch. 9 and 18.
- 9 C. F. Baes, Jr., and N. J. Meyer, Inorg. Chem., 1962, 1, 780.
- 10 V. Frei and H. Wendt, Ber. Bunsenges. Phys. Chem., 1970, 74, 593.
- 11 M. P. Whittaker, J. Asay, and E. M. Eyring, J. Phys. Chem., 1966, 70, 1005.

 $f_{x,y}$ and $C_{x,y}$ refer to the relative intensity and the concentration of $[(UO_2)_x(OH)_y]^{(2x-y)+}$, respectively.